Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 57
1.
Gut ; 73(6): 932-940, 2024 May 10.
Article En | MEDLINE | ID: mdl-38443061

OBJECTIVE: Colonic diverticulosis is a prevalent condition among older adults, marked by the presence of thin-walled pockets in the colon wall that can become inflamed, infected, haemorrhage or rupture. We present a case-control genetic and transcriptomic study aimed at identifying the genetic and cellular determinants underlying this condition and the relationship with other gastrointestinal disorders. DESIGN: We conducted DNA and RNA sequencing on colonic tissue from 404 patients with (N=172) and without (N=232) diverticulosis. We investigated variation in the transcriptome associated with diverticulosis and further integrated this variation with single-cell RNA-seq data from the human intestine. We also integrated our expression quantitative trait loci with genome-wide association study using Mendelian randomisation (MR). Furthermore, a Polygenic Risk Score analysis gauged associations between diverticulosis severity and other gastrointestinal disorders. RESULTS: We discerned 38 genes with differential expression and 17 with varied transcript usage linked to diverticulosis, indicating tissue remodelling as a primary diverticula formation mechanism. Diverticula formation was primarily linked to stromal and epithelial cells in the colon including endothelial cells, myofibroblasts, fibroblasts, goblet, tuft, enterocytes, neurons and glia. MR highlighted five genes including CCN3, CRISPLD2, ENTPD7, PHGR1 and TNFSF13, with potential causal effects on diverticulosis. Notably, ENTPD7 upregulation was confirmed in diverticulosis cases. Additionally, diverticulosis severity was positively correlated with genetic predisposition to diverticulitis. CONCLUSION: Our results suggest that tissue remodelling is a primary mechanism for diverticula formation. Individuals with an increased genetic proclivity to diverticulitis exhibit a larger numbers of diverticula on colonoscopy.


Diverticulosis, Colonic , Genome-Wide Association Study , Transcriptome , Humans , Diverticulosis, Colonic/genetics , Male , Female , Aged , Case-Control Studies , Middle Aged , Quantitative Trait Loci , Mendelian Randomization Analysis , Genetic Predisposition to Disease
2.
HGG Adv ; 5(1): 100245, 2024 Jan 11.
Article En | MEDLINE | ID: mdl-37817410

Mendelian randomization has been widely used to assess the causal effect of a heritable exposure variable on an outcome of interest, using genetic variants as instrumental variables. In practice, data on the exposure variable can be incomplete due to high cost of measurement and technical limits of detection. In this paper, we propose a valid and efficient method to handle both unmeasured and undetectable values of the exposure variable in one-sample Mendelian randomization analysis with individual-level data. We estimate the causal effect of the exposure variable on the outcome using maximum likelihood estimation and develop an expectation maximization algorithm for the computation of the estimator. Simulation studies show that the proposed method performs well in making inference on the causal effect. We apply our method to the Hispanic Community Health Study/Study of Latinos, a community-based prospective cohort study, and estimate the causal effect of several metabolites on phenotypes of interest.


Mendelian Randomization Analysis , Public Health , Humans , Mendelian Randomization Analysis/methods , Prospective Studies , Causality , Hispanic or Latino/genetics
3.
Nutr Metab Cardiovasc Dis ; 33(12): 2428-2439, 2023 Dec.
Article En | MEDLINE | ID: mdl-37798236

BACKGROUND AND AIMS: To investigate associations between avocado intake and glycemia in adults with Hispanic/Latino ancestry. METHODS AND RESULTS: The associations of avocado intake with measures of insulin and glucose homeostasis were evaluated in a cross-sectional analysis of up to 14,591 Hispanic/Latino adults, using measures of: average glucose levels (hemoglobin A1c; HbA1c), fasting glucose and insulin, glucose and insulin levels after an oral glucose tolerance test (OGTT), and calculated measures of insulin resistance (HOMA-IR, and HOMA-%ß), and insulinogenic index. Associations were assessed using multivariable linear regression models, which controlled for sociodemographic factors and health behaviors, and which were stratified by dysglycemia status. In those with normoglycemia, avocado intake was associated with a higher insulinogenic index (ß = 0.17 ± 0.07, P = 0.02). In those with T2D (treated and untreated), avocado intake was associated with lower hemoglobin A1c (HbA1c; ß = -0.36 ± 0.21, P = 0.02), and lower fasting glucose (ß = -0.27 ± 0.12, P = 0.02). In the those with untreated T2D, avocado intake was additionally associated with HOMA-%ß (ß = 0.39 ± 0.19, P = 0.04), higher insulin values 2-h after an oral glucose load (ß = 0.62 ± 0.23, P = 0.01), and a higher insulinogenic index (ß = 0.42 ± 0.18, P = 0.02). No associations were observed in participants with prediabetes. CONCLUSIONS: We observed an association of avocado intake with better glucose/insulin homeostasis, especially in those with T2D.


Diabetes Mellitus, Type 2 , Diet , Insulin Resistance , Persea , Adult , Humans , Blood Glucose , Cross-Sectional Studies , Diabetes Mellitus, Type 2/diagnosis , Glucose , Glycated Hemoglobin , Hispanic or Latino , Homeostasis , Insulin , Public Health
4.
Hum Genet ; 142(10): 1477-1489, 2023 Oct.
Article En | MEDLINE | ID: mdl-37658231

Inadequate representation of non-European ancestry populations in genome-wide association studies (GWAS) has limited opportunities to isolate functional variants. Fine-mapping in multi-ancestry populations should improve the efficiency of prioritizing variants for functional interrogation. To evaluate this hypothesis, we leveraged ancestry architecture to perform comparative GWAS and fine-mapping of obesity-related phenotypes in European ancestry populations from the UK Biobank (UKBB) and multi-ancestry samples from the Population Architecture for Genetic Epidemiology (PAGE) consortium with comparable sample sizes. In the investigated regions with genome-wide significant associations for obesity-related traits, fine-mapping in our ancestrally diverse sample led to 95% and 99% credible sets (CS) with fewer variants than in the European ancestry sample. Lead fine-mapped variants in PAGE regions had higher average coding scores, and higher average posterior probabilities for causality compared to UKBB. Importantly, 99% CS in PAGE loci contained strong expression quantitative trait loci (eQTLs) in adipose tissues or harbored more variants in tighter linkage disequilibrium (LD) with eQTLs. Leveraging ancestrally diverse populations with heterogeneous ancestry architectures, coupled with functional annotation, increased fine-mapping efficiency and performance, and reduced the set of candidate variants for consideration for future functional studies. Significant overlap in genetic causal variants across populations suggests generalizability of genetic mechanisms underpinning obesity-related traits across populations.


Genome-Wide Association Study , Obesity , Humans , Molecular Epidemiology , Linkage Disequilibrium , Obesity/genetics , Quantitative Trait Loci/genetics
5.
Breast Cancer Res ; 25(1): 66, 2023 06 12.
Article En | MEDLINE | ID: mdl-37308906

BACKGROUND: Moderate to heavy alcohol consumption is associated with an increased risk of breast cancer. The etiologic role of genetic variation in genes involved in ethanol metabolism has not been established, with little information available among women of African ancestry. METHODS: Our analysis from the African American Breast Cancer Epidemiology and Risk (AMBER) Consortium included 2889 U.S. Black women who were current drinkers at the time of breast cancer diagnosis (N cases = 715) and had available genetic data for four ethanol metabolism genomic regions (ADH, ALDH, CYP2E1, and ALDH2). We used generalized estimating equations to calculate genetic effects, gene* alcohol consumption (≥ 7drinks/week vs. < 7/week) interactions, and joint main plus interaction effects of up to 23,247 variants in ethanol metabolism genomic regions on odds of breast cancer. RESULTS: Among current drinkers, 21% of cases and 14% of controls reported consuming ≥ 7 drinks per week. We identified statistically significant genetic effects for rs79865122-C in CYP2E1 with odds of ER- breast cancer and odds of triple negative breast cancer, as well as a significant joint effect with odds of ER- breast cancer (≥ 7drinks per week OR = 3.92, < 7 drinks per week OR = 0.24, pjoint = 3.74 × 10-6). In addition, there was a statistically significant interaction of rs3858704-A in ALDH2 with consumption of ≥ 7 drinks/week on odds of triple negative breast cancer (≥ 7drinks per week OR = 4.41, < 7 drinks per week OR = 0.57, pint = 8.97 × 10-5). CONCLUSIONS: There is a paucity of information on the impact of genetic variation in alcohol metabolism genes on odds of breast cancer among Black women. Our analysis of variants in four genomic regions harboring ethanol metabolism genes in a large consortium of U.S. Black women identified significant associations between rs79865122-C in CYP2E1 and odds of ER- and triple negative breast cancer. Replication of these findings is warranted.


Alcohol Drinking , Triple Negative Breast Neoplasms , Female , Humans , Aldehyde Dehydrogenase, Mitochondrial , Cytochrome P-450 CYP2E1 , Black or African American , Risk Factors
6.
Epigenetics ; 18(1): 2211361, 2023 12.
Article En | MEDLINE | ID: mdl-37233989

BACKGROUND: Dietary intake of antioxidants such as vitamins C and E protect against oxidative stress, and may also be associated with altered DNA methylation patterns. METHODS: We meta-analysed epigenome-wide association study (EWAS) results from 11,866 participants across eight population-based cohorts to evaluate the association between self-reported dietary and supplemental intake of vitamins C and E with DNA methylation. EWAS were adjusted for age, sex, BMI, caloric intake, blood cell type proportion, smoking status, alcohol consumption, and technical covariates. Significant results of the meta-analysis were subsequently evaluated in gene set enrichment analysis (GSEA) and expression quantitative trait methylation (eQTM) analysis. RESULTS: In meta-analysis, methylation at 4,656 CpG sites was significantly associated with vitamin C intake at FDR ≤ 0.05. The most significant CpG sites associated with vitamin C (at FDR ≤ 0.01) were enriched for pathways associated with systems development and cell signalling in GSEA, and were associated with downstream expression of genes enriched in the immune response in eQTM analysis. Furthermore, methylation at 160 CpG sites was significantly associated with vitamin E intake at FDR ≤ 0.05, but GSEA and eQTM analysis of the top most significant CpG sites associated with vitamin E did not identify significant enrichment of any biological pathways investigated. CONCLUSIONS: We identified significant associations of many CpG sites with vitamin C and E intake, and our results suggest that vitamin C intake may be associated with systems development and the immune response.


Ascorbic Acid , DNA Methylation , Humans , Epigenome , Vitamins/pharmacology , Vitamin E , Genome-Wide Association Study/methods , CpG Islands , Epigenesis, Genetic
7.
HGG Adv ; 4(1): 100163, 2023 01 12.
Article En | MEDLINE | ID: mdl-36568030

Anthropometric traits, measuring body size and shape, are highly heritable and significant clinical risk factors for cardiometabolic disorders. These traits have been extensively studied in genome-wide association studies (GWASs), with hundreds of genome-wide significant loci identified. We performed a whole-exome sequence analysis of the genetics of height, body mass index (BMI) and waist/hip ratio (WHR). We meta-analyzed single-variant and gene-based associations of whole-exome sequence variation with height, BMI, and WHR in up to 22,004 individuals, and we assessed replication of our findings in up to 16,418 individuals from 10 independent cohorts from Trans-Omics for Precision Medicine (TOPMed). We identified four trait associations with single-nucleotide variants (SNVs; two for height and two for BMI) and replicated the LECT2 gene association with height. Our expression quantitative trait locus (eQTL) analysis within previously reported GWAS loci implicated CEP63 and RFT1 as potential functional genes for known height loci. We further assessed enrichment of SNVs, which were monogenic or syndromic variants within loci associated with our three traits. This led to the significant enrichment results for height, whereas we observed no Bonferroni-corrected significance for all SNVs. With a sample size of ∼20,000 whole-exome sequences in our discovery dataset, our findings demonstrate the importance of genomic sequencing in genetic association studies, yet they also illustrate the challenges in identifying effects of rare genetic variants.


Exome , Genome-Wide Association Study , Humans , Exome/genetics , Body Mass Index , Quantitative Trait Loci/genetics , Anthropometry , Intercellular Signaling Peptides and Proteins , Cell Cycle Proteins
9.
HGG Adv ; 3(2): 100099, 2022 Apr 14.
Article En | MEDLINE | ID: mdl-35399580

Hispanic/Latinos have been underrepresented in genome-wide association studies (GWAS) for anthropometric traits despite their notable anthropometric variability, ancestry proportions, and high burden of growth stunting and overweight/obesity. To address this knowledge gap, we analyzed densely imputed genetic data in a sample of Hispanic/Latino adults to identify and fine-map genetic variants associated with body mass index (BMI), height, and BMI-adjusted waist-to-hip ratio (WHRadjBMI). We conducted a GWAS of 18 studies/consortia as part of the Hispanic/Latino Anthropometry (HISLA) Consortium (stage 1, n = 59,771) and generalized our findings in 9 additional studies (stage 2, n = 10,538). We conducted a trans-ancestral GWAS with summary statistics from HISLA stage 1 and existing consortia of European and African ancestries. In our HISLA stage 1 + 2 analyses, we discovered one BMI locus, as well as two BMI signals and another height signal each within established anthropometric loci. In our trans-ancestral meta-analysis, we discovered three BMI loci, one height locus, and one WHRadjBMI locus. We also identified 3 secondary signals for BMI, 28 for height, and 2 for WHRadjBMI in established loci. We show that 336 known BMI, 1,177 known height, and 143 known WHRadjBMI (combined) SNPs demonstrated suggestive transferability (nominal significance and effect estimate directional consistency) in Hispanic/Latino adults. Of these, 36 BMI, 124 height, and 11 WHRadjBMI SNPs were significant after trait-specific Bonferroni correction. Trans-ancestral meta-analysis of the three ancestries showed a small-to-moderate impact of uncorrected population stratification on the resulting effect size estimates. Our findings demonstrate that future studies may also benefit from leveraging diverse ancestries and differences in linkage disequilibrium patterns to discover novel loci and additional signals with less residual population stratification.

10.
Am J Hum Genet ; 109(4): 669-679, 2022 04 07.
Article En | MEDLINE | ID: mdl-35263625

One mechanism by which genetic factors influence complex traits and diseases is altering gene expression. Direct measurement of gene expression in relevant tissues is rarely tenable; however, genetically regulated gene expression (GReX) can be estimated using prediction models derived from large multi-omic datasets. These approaches have led to the discovery of many gene-trait associations, but whether models derived from predominantly European ancestry (EA) reference panels can map novel associations in ancestrally diverse populations remains unclear. We applied PrediXcan to impute GReX in 51,520 ancestrally diverse Population Architecture using Genomics and Epidemiology (PAGE) participants (35% African American, 45% Hispanic/Latino, 10% Asian, and 7% Hawaiian) across 25 key cardiometabolic traits and relevant tissues to identify 102 novel associations. We then compared associations in PAGE to those in a random subset of 50,000 White British participants from UK Biobank (UKBB50k) for height and body mass index (BMI). We identified 517 associations across 47 tissues in PAGE but not UKBB50k, demonstrating the importance of diverse samples in identifying trait-associated GReX. We observed that variants used in PrediXcan models were either more or less differentiated across continental-level populations than matched-control variants depending on the specific population reflecting sampling bias. Additionally, variants from identified genes specific to either PAGE or UKBB50k analyses were more ancestrally differentiated than those in genes detected in both analyses, underlining the value of population-specific discoveries. This suggests that while EA-derived transcriptome imputation models can identify new associations in non-EA populations, models derived from closely matched reference panels may yield further insights. Our findings call for more diversity in reference datasets of tissue-specific gene expression.


Cardiovascular Diseases , Genome-Wide Association Study , Genetic Predisposition to Disease , Humans , Life Style , Polymorphism, Single Nucleotide , Transcriptome
11.
Pediatr Obes ; 17(6): e12885, 2022 06.
Article En | MEDLINE | ID: mdl-35040268

BACKGROUND: Few studies have focused on the role of adverse childhood experiences (ACEs) in relation to genetic susceptibility to obesity. OBJECTIVE: We aimed to examine the interaction between the presence of ACEs (i.e., physical, psychological and sexual abuse) before the age of 18 and BMI polygenic score. METHODS: Data came from the National Longitudinal Study of Adolescent to Adult Health (Add Health) Wave IV (2007/2008) where saliva samples were collected for DNA genotyping and information on BMI and ACEs were obtained from 5854 European American (EA), 2073 African American (AA) and 1448 Hispanic American (HA) participants aged 24 to 32 years old. Polygenic scores were calculated as the sum of the number of risk alleles of BMI-related SNPs which were weighted by effect size. A race/ethnicity-stratified mixed-effects linear regression model was used to test for differential association between BMI polygenic score and BMI by the presence of ACEs. RESULTS: We did not find any evidence of significant interaction between ACEs and polygenic score in relation to BMI among EA (p = 0.289), AA (p = 0.618) or HA (p = 0.870). In main effects models, polygenic score was positively associated with BMI in all race/ethnic groups, yet the presence of ACEs was associated with increased BMI only among EA. CONCLUSION: We did not find any evidence that ACEs exacerbate genetic predisposition to increased BMI in early adulthood.


Adverse Childhood Experiences , Obesity , Adult , Body Mass Index , Genetic Predisposition to Disease , Humans , Longitudinal Studies , Obesity/epidemiology , Obesity/genetics , Young Adult
12.
Genes (Basel) ; 12(7)2021 07 08.
Article En | MEDLINE | ID: mdl-34356065

BACKGROUND: Thousands of genetic variants have been associated with hematological traits, though target genes remain unknown at most loci. Moreover, limited analyses have been conducted in African ancestry and Hispanic/Latino populations; hematological trait associated variants more common in these populations have likely been missed. METHODS: To derive gene expression prediction models, we used ancestry-stratified datasets from the Multi-Ethnic Study of Atherosclerosis (MESA, including n = 229 African American and n = 381 Hispanic/Latino participants, monocytes) and the Depression Genes and Networks study (DGN, n = 922 European ancestry participants, whole blood). We then performed a transcriptome-wide association study (TWAS) for platelet count, hemoglobin, hematocrit, and white blood cell count in African (n = 27,955) and Hispanic/Latino (n = 28,324) ancestry participants. RESULTS: Our results revealed 24 suggestive signals (p < 1 × 10-4) that were conditionally distinct from known GWAS identified variants and successfully replicated these signals in European ancestry subjects from UK Biobank. We found modestly improved correlation of predicted and measured gene expression in an independent African American cohort (the Genetic Epidemiology Network of Arteriopathy (GENOA) study (n = 802), lymphoblastoid cell lines) using the larger DGN reference panel; however, some genes were well predicted using MESA but not DGN. CONCLUSIONS: These analyses demonstrate the importance of performing TWAS and other genetic analyses across diverse populations and of balancing sample size and ancestry background matching when selecting a TWAS reference panel.


Black or African American/genetics , Blood Cells/pathology , Genetic Predisposition to Disease , Hispanic or Latino/genetics , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Transcriptome , Blood Cells/metabolism , Cohort Studies , Genome-Wide Association Study , Humans , Phenotype , White People/genetics
13.
Circ Genom Precis Med ; 14(4): e003288, 2021 08.
Article En | MEDLINE | ID: mdl-34270325

BACKGROUND: ChREBP (carbohydrate responsive element binding protein) is a transcription factor that responds to sugar consumption. Sugar-sweetened beverage (SSB) consumption and genetic variants in the CHREBP locus have separately been linked to HDL-C (high-density lipoprotein cholesterol) and triglyceride concentrations. We hypothesized that SSB consumption would modify the association between genetic variants in the CHREBP locus and dyslipidemia. METHODS: Data from 11 cohorts from the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium (N=63 599) and the UK Biobank (N=59 220) were used to quantify associations of SSB consumption, genetic variants, and their interaction on HDL-C and triglyceride concentrations using linear regression models. A total of 1606 single nucleotide polymorphisms within or near CHREBP were considered. SSB consumption was estimated from validated questionnaires, and participants were grouped by their estimated intake. RESULTS: In a meta-analysis, rs71556729 was significantly associated with higher HDL-C concentrations only among the highest SSB consumers (ß, 2.12 [95% CI, 1.16-3.07] mg/dL per allele; P<0.0001), but not significantly among the lowest SSB consumers (P=0.81; PDiff <0.0001). Similar results were observed for 2 additional variants (rs35709627 and rs71556736). For triglyceride, rs55673514 was positively associated with triglyceride concentrations only among the highest SSB consumers (ß, 0.06 [95% CI, 0.02-0.09] ln-mg/dL per allele, P=0.001) but not the lowest SSB consumers (P=0.84; PDiff=0.0005). CONCLUSIONS: Our results identified genetic variants in the CHREBP locus that may protect against SSB-associated reductions in HDL-C and other variants that may exacerbate SSB-associated increases in triglyceride concentrations. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT00005133, NCT00005121, NCT00005487, and NCT00000479.


Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Cholesterol, HDL/blood , Polymorphism, Single Nucleotide , Sugar-Sweetened Beverages/adverse effects , Triglycerides/blood , Adult , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Cholesterol, HDL/genetics , Female , Humans , Male , Meta-Analysis as Topic , Middle Aged , Triglycerides/genetics
14.
Hum Mol Genet ; 30(22): 2190-2204, 2021 11 01.
Article En | MEDLINE | ID: mdl-34165540

Central obesity is a leading health concern with a great burden carried by ethnic minority populations, especially Hispanics/Latinos. Genetic factors contribute to the obesity burden overall and to inter-population differences. We aimed to identify the loci associated with central adiposity measured as waist-to-hip ratio (WHR), waist circumference (WC) and hip circumference (HIP) adjusted for body mass index (adjBMI) by using the Hispanic Community Health Study/Study of Latinos (HCHS/SOL); determine if differences in associations differ by background group within HCHS/SOL and determine whether previously reported associations generalize to HCHS/SOL. Our analyses included 7472 women and 5200 men of mainland (Mexican, Central and South American) and Caribbean (Puerto Rican, Cuban and Dominican) background residing in the USA. We performed genome-wide association analyses stratified and combined across sexes using linear mixed-model regression. We identified 16 variants for waist-to-hip ratio adjusted for body mass index (WHRadjBMI), 22 for waist circumference adjusted for body mass index (WCadjBMI) and 28 for hip circumference adjusted for body mass index (HIPadjBMI), which reached suggestive significance (P < 1 × 10-6). Many loci exhibited differences in strength of associations by ethnic background and sex. We brought a total of 66 variants forward for validation in cohorts (N = 34 161) with participants of Hispanic/Latino, African and European descent. We confirmed four novel loci (P < 0.05 and consistent direction of effect, and P < 5 × 10-8 after meta-analysis), including two for WHRadjBMI (rs13301996, rs79478137); one for WCadjBMI (rs3168072) and one for HIPadjBMI (rs28692724). Also, we generalized previously reported associations to HCHS/SOL, (8 for WHRadjBMI, 10 for WCadjBMI and 12 for HIPadjBMI). Our study highlights the importance of large-scale genomic studies in ancestrally diverse Hispanic/Latino populations for identifying and characterizing central obesity susceptibility that may be ancestry-specific.


Adiposity/genetics , Body Fat Distribution , Genome-Wide Association Study , Hispanic or Latino/genetics , Quantitative Trait, Heritable , Alleles , Humans , Polymorphism, Single Nucleotide
15.
Am J Hum Genet ; 108(4): 564-582, 2021 04 01.
Article En | MEDLINE | ID: mdl-33713608

Although many loci have been associated with height in European ancestry populations, very few have been identified in African ancestry individuals. Furthermore, many of the known loci have yet to be generalized to and fine-mapped within a large-scale African ancestry sample. We performed sex-combined and sex-stratified meta-analyses in up to 52,764 individuals with height and genome-wide genotyping data from the African Ancestry Anthropometry Genetics Consortium (AAAGC). We additionally combined our African ancestry meta-analysis results with published European genome-wide association study (GWAS) data. In the African ancestry analyses, we identified three novel loci (SLC4A3, NCOA2, ECD/FAM149B1) in sex-combined results and two loci (CRB1, KLF6) in women only. In the African plus European sex-combined GWAS, we identified an additional three novel loci (RCCD1, G6PC3, CEP95) which were equally driven by AAAGC and European results. Among 39 genome-wide significant signals at known loci, conditioning index SNPs from European studies identified 20 secondary signals. Two of the 20 new secondary signals and none of the 8 novel loci had minor allele frequencies (MAF) < 5%. Of 802 known European height signals, 643 displayed directionally consistent associations with height, of which 205 were nominally significant (p < 0.05) in the African ancestry sex-combined sample. Furthermore, 148 of 241 loci contained ≤20 variants in the credible sets that jointly account for 99% of the posterior probability of driving the associations. In summary, trans-ethnic meta-analyses revealed novel signals and further improved fine-mapping of putative causal variants in loci shared between African and European ancestry populations.


Black People/genetics , Body Height/genetics , Genome-Wide Association Study , Africa/ethnology , Black or African American/genetics , Europe/ethnology , Female , Humans , Male , Polymorphism, Single Nucleotide/genetics
16.
Breast Cancer Res Treat ; 185(2): 469-478, 2021 Jan.
Article En | MEDLINE | ID: mdl-32960377

PURPOSE: Circulating anti-Müllerian hormone (AMH) levels are positively associated with time to menopause and breast cancer risk. We examined breast cancer associations with single nucleotide polymorphisms (SNPs) in the AMH gene or its receptor genes, ACVR1 and AMHR2, among African American women. METHODS: In the AMBER consortium, we tested 65 candidate SNPs, and 1130 total variants, in or near AMH, ACVR1, and AMHR2 and breast cancer risk. Overall, 3649 cases and 4230 controls contributed to analyses. Odds ratios (OR) and 95% confidence intervals (CI) for breast cancer were calculated using multivariable logistic regression. RESULTS: After correction for multiple comparisons (false-discovery rate of 5%), there were no statistically significant associations with breast cancer risk. Without correction for multiple testing, four candidate SNPs in ACVR1 and one near AMH were associated with breast cancer risk. In ACVR1, rs13395576[C] was associated with lower breast cancer risk overall (OR 0.84; 95% CI 0.72, 0.97) and for ER+ disease (OR 0.75; CI 0.62, 0.89) (p < 0.05). Rs1220110[A] and rs1220134[T] each had ORs of 0.89-0.90 for postmenopausal and ER+ breast cancer (p ≤ 0.03). Conversely, rs1682130[T] was associated with higher risk of ER+ breast cancer (OR 1.17; 95% CI 1.04, 1.32). Near AMH, rs6510652[T] had ORs of 0.85-0.90 for breast cancer overall and after menopause (p ≤ 0.02). CONCLUSIONS: The present results, from a large study of African American women, provide limited support for an association between AMH-related polymorphisms and breast cancer risk and require replication in other studies.


Anti-Mullerian Hormone , Breast Neoplasms , Polymorphism, Single Nucleotide , Anti-Mullerian Hormone/genetics , Breast Neoplasms/epidemiology , Breast Neoplasms/genetics , Case-Control Studies , Cohort Studies , Female , Humans
17.
Diabetes ; 69(12): 2806-2818, 2020 12.
Article En | MEDLINE | ID: mdl-32917775

Leptin influences food intake by informing the brain about the status of body fat stores. Rare LEP mutations associated with congenital leptin deficiency cause severe early-onset obesity that can be mitigated by administering leptin. However, the role of genetic regulation of leptin in polygenic obesity remains poorly understood. We performed an exome-based analysis in up to 57,232 individuals of diverse ancestries to identify genetic variants that influence adiposity-adjusted leptin concentrations. We identify five novel variants, including four missense variants, in LEP, ZNF800, KLHL31, and ACTL9, and one intergenic variant near KLF14. The missense variant Val94Met (rs17151919) in LEP was common in individuals of African ancestry only, and its association with lower leptin concentrations was specific to this ancestry (P = 2 × 10-16, n = 3,901). Using in vitro analyses, we show that the Met94 allele decreases leptin secretion. We also show that the Met94 allele is associated with higher BMI in young African-ancestry children but not in adults, suggesting that leptin regulates early adiposity.


Adiposity/genetics , Leptin/metabolism , Racial Groups/genetics , Gene Expression Regulation, Developmental , Genetic Variation , Genotype , Humans , Leptin/blood , Leptin/chemistry , Leptin/genetics , Models, Molecular , Protein Conformation
18.
Gut Microbes ; 11(6): 1632-1642, 2020 11 01.
Article En | MEDLINE | ID: mdl-32576065

Type 2 diabetes (T2D) is associated with reduced gut microbiome diversity, although the cause is unclear. Metabolites generated by gut microbes also appear to be causative factors in T2D. We therefore searched for serum metabolites predictive of gut microbiome diversity in 1018 females from TwinsUK with concurrent metabolomic profiling and microbiome composition. We generated a Microbial Metabolites Diversity (MMD) score of six circulating metabolites that explained over 18% of the variance in microbiome alpha diversity. Moreover, the MMD score was associated with a significantly lower odds of prevalent (OR[95%CI] = 0.22[0.07;0.70], P = .01) and incident T2D (HR[95%CI] = 0.31[0.11,0.90], P = .03). We replicated our results in 1522 individuals from the ARIC study (prevalent T2D: OR[95%CI] = 0.79[0.64,0.96], P = .02, incident T2D: HR[95%CI] = 0.87[0.79,0.95], P = .003). The MMD score mediated 28%[15%,94%] of the total effect of gut microbiome on T2D after adjusting for confounders. Metabolites predicting higher microbiome diversity included 3-phenylpropionate(hydrocinnamate), indolepropionate, cinnamoylglycine and 5-alpha-pregnan-3beta,20 alpha-diol monosulfate(2) of which indolepropionate and phenylpropionate have already been linked to lower incidence of T2D. Metabolites correlating with lower microbial diversity included glutarate and imidazole propionate, of which the latter has been implicated in insulin resistance. Our results suggest that the effect of gut microbiome diversity on T2D is largely mediated by microbial metabolites, which might be modifiable by diet.


Bacteria/metabolism , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/microbiology , Gastrointestinal Microbiome , Serum/chemistry , Aged , Bacteria/classification , Bacteria/isolation & purification , Cohort Studies , Female , Humans , Male , Metabolomics , Middle Aged , Serum/metabolism
19.
Circ Res ; 126(12): 1816-1840, 2020 06 05.
Article En | MEDLINE | ID: mdl-32496918

Genome-wide association studies have revolutionized our understanding of the genetic underpinnings of cardiometabolic disease. Yet, the inadequate representation of individuals of diverse ancestral backgrounds in these studies may undercut their ultimate potential for both public health and precision medicine. The goal of this review is to describe the imperativeness of studying the populations who are most affected by cardiometabolic disease, to the aim of better understanding the genetic underpinnings of the disease. We support this premise by describing the current variation in the global burden of cardiometabolic disease and emphasize the importance of building a globally and ancestrally representative genetics evidence base for the identification of population-specific variants, fine-mapping, and polygenic risk score estimation. We discuss the important ethical, legal, and social implications of increasing ancestral diversity in genetic studies of cardiometabolic disease and the challenges that arise from the (1) lack of diversity in current reference populations and available analytic samples and the (2) unequal generation of health-associated genomic data and their prediction accuracies. Despite these challenges, we conclude that additional, unprecedented opportunities lie ahead for public health genomics and the realization of precision medicine, provided that the gap in diversity can be systematically addressed. Achieving this goal will require concerted efforts by social, academic, professional and regulatory stakeholders and communities, and these efforts must be based on principles of equity and social justice.


Genome-Wide Association Study/methods , Metabolic Syndrome/genetics , Gene Frequency , Genome-Wide Association Study/standards , Humans , Metabolic Syndrome/epidemiology , Polymorphism, Genetic
20.
BMJ ; 366: l4292, 2019 07 25.
Article En | MEDLINE | ID: mdl-31345923

OBJECTIVE: To investigate whether the genetic burden of type 2 diabetes modifies the association between the quality of dietary fat and the incidence of type 2 diabetes. DESIGN: Individual participant data meta-analysis. DATA SOURCES: Eligible prospective cohort studies were systematically sourced from studies published between January 1970 and February 2017 through electronic searches in major medical databases (Medline, Embase, and Scopus) and discussion with investigators. REVIEW METHODS: Data from cohort studies or multicohort consortia with available genome-wide genetic data and information about the quality of dietary fat and the incidence of type 2 diabetes in participants of European descent was sought. Prospective cohorts that had accrued five or more years of follow-up were included. The type 2 diabetes genetic risk profile was characterized by a 68-variant polygenic risk score weighted by published effect sizes. Diet was recorded by using validated cohort-specific dietary assessment tools. Outcome measures were summary adjusted hazard ratios of incident type 2 diabetes for polygenic risk score, isocaloric replacement of carbohydrate (refined starch and sugars) with types of fat, and the interaction of types of fat with polygenic risk score. RESULTS: Of 102 305 participants from 15 prospective cohort studies, 20 015 type 2 diabetes cases were documented after a median follow-up of 12 years (interquartile range 9.4-14.2). The hazard ratio of type 2 diabetes per increment of 10 risk alleles in the polygenic risk score was 1.64 (95% confidence interval 1.54 to 1.75, I2=7.1%, τ2=0.003). The increase of polyunsaturated fat and total omega 6 polyunsaturated fat intake in place of carbohydrate was associated with a lower risk of type 2 diabetes, with hazard ratios of 0.90 (0.82 to 0.98, I2=18.0%, τ2=0.006; per 5% of energy) and 0.99 (0.97 to 1.00, I2=58.8%, τ2=0.001; per increment of 1 g/d), respectively. Increasing monounsaturated fat in place of carbohydrate was associated with a higher risk of type 2 diabetes (hazard ratio 1.10, 95% confidence interval 1.01 to 1.19, I2=25.9%, τ2=0.006; per 5% of energy). Evidence of small study effects was detected for the overall association of polyunsaturated fat with the risk of type 2 diabetes, but not for the omega 6 polyunsaturated fat and monounsaturated fat associations. Significant interactions between dietary fat and polygenic risk score on the risk of type 2 diabetes (P>0.05 for interaction) were not observed. CONCLUSIONS: These data indicate that genetic burden and the quality of dietary fat are each associated with the incidence of type 2 diabetes. The findings do not support tailoring recommendations on the quality of dietary fat to individual type 2 diabetes genetic risk profiles for the primary prevention of type 2 diabetes, and suggest that dietary fat is associated with the risk of type 2 diabetes across the spectrum of type 2 diabetes genetic risk.


Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/etiology , Diet/adverse effects , Dietary Fats/adverse effects , Adult , Alleles , Diabetes Mellitus, Type 2/genetics , Female , Genome-Wide Association Study , Humans , Incidence , Male , Middle Aged , Proportional Hazards Models , Prospective Studies , Risk Factors
...